Lie algebra sp(8), type \(C^{1}_4\)
Semisimple complex Lie subalgebras

sp(8), type \(C^{1}_4\)
Structure constants and notation.
Root subalgebras / root subsystems.
sl(2)-subalgebras.
Semisimple subalgebras.

Page generated by the calculator project.
Up to linear equivalence, there are total 46 semisimple subalgebras (including the full subalgebra). The subalgebras are ordered by rank, Dynkin indices of simple constituents and dimensions of simple constituents.
The upper index indicates the Dynkin index, the lower index indicates the rank of the subalgebra. Generation comments.
Computation time in seconds: 579.986.
181140452 total arithmetic operations performed = 176537754 additions and 4602698 multiplications.
The base field over which the subalgebras were realized is: \(\displaystyle \mathbb Q\)
Number of root subalgebras other than the Cartan and full subalgebra: 18
Number of sl(2)'s: 13
Subalgebra \(A^{1}_1\) ↪ \(C^{1}_4\)
1 out of 46
Subalgebra type: \(\displaystyle A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Centralizer: \(\displaystyle C^{1}_3\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{1}_1\)
Basis of Cartan of centralizer: 3 vectors: (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle 2A^{1}_1\) , \(\displaystyle A^{2}_1+A^{1}_1\) , \(\displaystyle A^{3}_1+A^{1}_1\) , \(\displaystyle A^{8}_1+A^{1}_1\) , \(\displaystyle A^{10}_1+A^{1}_1\) , \(\displaystyle A^{11}_1+A^{1}_1\) , \(\displaystyle A^{35}_1+A^{1}_1\) , \(\displaystyle 3A^{1}_1\) , \(\displaystyle A^{2}_1+2A^{1}_1\) , \(\displaystyle A^{8}_1+A^{3}_1+A^{1}_1\) , \(\displaystyle A^{10}_1+2A^{1}_1\) , \(\displaystyle B^{1}_2+A^{1}_1\) , \(\displaystyle A^{2}_2+A^{1}_1\) , \(\displaystyle 4A^{1}_1\) , \(\displaystyle B^{1}_2+2A^{1}_1\) , \(\displaystyle C^{1}_3+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_1\): (2, 2, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-16}\)
Positive simple generators: \(\displaystyle g_{16}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{1}}\oplus 6V_{\omega_{1}}\oplus 21V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{-2\psi_{2}+4\psi_{3}}\oplus V_{\psi_{1}-\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}-\psi_{2}+2\psi_{3}}\oplus V_{2\psi_{1}}
\oplus V_{\omega_{1}+\psi_{1}}\oplus V_{2\omega_{1}}\oplus V_{-\psi_{1}+2\psi_{3}}\oplus V_{\psi_{1}-2\psi_{2}+2\psi_{3}}\oplus V_{\psi_{2}}
\oplus V_{\omega_{1}-\psi_{1}+\psi_{2}}\oplus V_{2\psi_{1}-\psi_{2}}\oplus V_{\omega_{1}+\psi_{1}-\psi_{2}}\oplus V_{-\psi_{1}-\psi_{2}+2\psi_{3}}
\oplus V_{-2\psi_{1}+2\psi_{2}}\oplus 3V_{0}\oplus V_{\omega_{1}-\psi_{1}}\oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{\psi_{1}+\psi_{2}-2\psi_{3}}
\oplus V_{\omega_{1}+\psi_{2}-2\psi_{3}}\oplus V_{-2\psi_{1}+\psi_{2}}\oplus V_{-\psi_{2}}\oplus V_{-\psi_{1}+2\psi_{2}-2\psi_{3}}
\oplus V_{\psi_{1}-2\psi_{3}}\oplus V_{-2\psi_{1}}\oplus V_{-\psi_{1}+\psi_{2}-2\psi_{3}}\oplus V_{2\psi_{2}-4\psi_{3}}\)
Made total 278 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{2}_1\) ↪ \(C^{1}_4\)
2 out of 46
Subalgebra type: \(\displaystyle A^{2}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Centralizer: \(\displaystyle B^{1}_2\) + \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2\)
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{2}_1+A^{1}_1\) , \(\displaystyle 2A^{2}_1\) , \(\displaystyle A^{10}_1+A^{2}_1\) , \(\displaystyle A^{2}_1+2A^{1}_1\) , \(\displaystyle B^{1}_2+A^{2}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (2, 4, 4, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-15}\)
Positive simple generators: \(\displaystyle g_{15}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 3V_{2\omega_{1}}\oplus 8V_{\omega_{1}}\oplus 11V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{1}+\psi_{1}-\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}+\psi_{1}+\psi_{2}}\oplus V_{-2\psi_{2}+4\psi_{3}}
\oplus V_{2\psi_{3}}\oplus V_{2\psi_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}-\psi_{1}-\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}-\psi_{1}+\psi_{2}}
\oplus V_{\omega_{1}+\psi_{1}-\psi_{2}}\oplus V_{\omega_{1}+\psi_{1}+\psi_{2}-2\psi_{3}}\oplus V_{-2\psi_{2}+2\psi_{3}}\oplus 3V_{0}
\oplus V_{2\omega_{1}-2\psi_{1}}\oplus V_{2\psi_{2}-2\psi_{3}}\oplus V_{\omega_{1}-\psi_{1}-\psi_{2}}\oplus V_{\omega_{1}-\psi_{1}+\psi_{2}-2\psi_{3}}
\oplus V_{-2\psi_{2}}\oplus V_{-2\psi_{3}}\oplus V_{2\psi_{2}-4\psi_{3}}\)
Made total 56844127 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{3}_1\) ↪ \(C^{1}_4\)
3 out of 46
Subalgebra type: \(\displaystyle A^{3}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle A^{8}_1+A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{3}_1\)
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{3}_1+A^{1}_1\) , \(\displaystyle A^{8}_1+A^{3}_1\) , \(\displaystyle A^{9}_1+A^{3}_1\) , \(\displaystyle A^{8}_1+A^{3}_1+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{3}_1\): (2, 4, 6, 3): 6
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-10}+g_{-15}\)
Positive simple generators: \(\displaystyle g_{15}+g_{10}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/3\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}6\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 6V_{2\omega_{1}}\oplus 6V_{\omega_{1}}\oplus 6V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\psi_{2}}\oplus V_{\omega_{1}+\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+\psi_{1}}
\oplus V_{\omega_{1}-\psi_{1}+2\psi_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{\psi_{1}}\oplus V_{2\omega_{1}-\psi_{1}}\oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}
\oplus V_{\omega_{1}+\psi_{1}-2\psi_{2}}\oplus V_{-\psi_{1}}\oplus V_{\omega_{1}-2\psi_{2}}\oplus V_{\omega_{1}-\psi_{1}-2\psi_{2}}
\oplus V_{-4\psi_{2}}\)
Made total 11311893 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{4}_1\) ↪ \(C^{1}_4\)
4 out of 46
Subalgebra type: \(\displaystyle A^{4}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle 2A^{4}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{4}_1\)
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0), (0, 0, 1, 0)
Contained up to conjugation as a direct summand of: \(\displaystyle 2A^{4}_1\) , \(\displaystyle A^{8}_1+A^{4}_1\) , \(\displaystyle 3A^{4}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{4}_1\): (2, 4, 6, 4): 8
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-7}+g_{-15}\)
Positive simple generators: \(\displaystyle g_{15}+g_{7}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}8\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 10V_{2\omega_{1}}\oplus 6V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+\psi_{1}+\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\psi_{1}+\psi_{2}}
\oplus V_{2\omega_{1}-\psi_{1}+\psi_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{2\omega_{1}+\psi_{1}-\psi_{2}}\oplus V_{-\psi_{1}+\psi_{2}}
\oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}\oplus V_{\psi_{1}-\psi_{2}}\oplus V_{2\omega_{1}-\psi_{1}-\psi_{2}}\oplus V_{2\omega_{1}-2\psi_{2}}
\oplus V_{-\psi_{1}-\psi_{2}}\)
Made total 62294112 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{8}_1\) ↪ \(C^{1}_4\)
5 out of 46
Subalgebra type: \(\displaystyle A^{8}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle A^{3}_1+A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{8}_1\)
Basis of Cartan of centralizer: 2 vectors: (1, 0, 1, 0), (2, 0, 0, -1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{8}_1+A^{1}_1\) , \(\displaystyle A^{8}_1+A^{3}_1\) , \(\displaystyle A^{8}_1+A^{4}_1\) , \(\displaystyle A^{8}_1+A^{3}_1+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{8}_1\): (4, 8, 8, 4): 16
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-6}+g_{-11}\)
Positive simple generators: \(\displaystyle 2g_{11}+2g_{6}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/4\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}16\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 3V_{4\omega_{1}}\oplus 5V_{2\omega_{1}}\oplus 6V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus V_{2\psi_{1}+4\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{2}}
\oplus V_{4\omega_{1}}\oplus V_{2\psi_{1}}\oplus V_{2\omega_{1}}\oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}}\oplus V_{2\omega_{1}-2\psi_{1}-2\psi_{2}}
\oplus V_{4\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus V_{-2\psi_{1}-4\psi_{2}}\)
Made total 2960749 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{9}_1\) ↪ \(C^{1}_4\)
6 out of 46
Subalgebra type: \(\displaystyle A^{9}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle A^{3}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{8}_1+A^{1}_1\)
Basis of Cartan of centralizer: 1 vectors: (2, 0, 0, -1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{9}_1+A^{3}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{9}_1\): (4, 8, 10, 5): 18
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-6}+g_{-10}+g_{-11}\)
Positive simple generators: \(\displaystyle 2g_{11}+g_{10}+2g_{6}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/9\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}18\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 3V_{4\omega_{1}}\oplus 2V_{3\omega_{1}}\oplus 2V_{2\omega_{1}}\oplus 2V_{\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\omega_{1}+4\psi}\oplus V_{3\omega_{1}+2\psi}\oplus V_{4\psi}\oplus V_{4\omega_{1}}\oplus V_{\omega_{1}+2\psi}\oplus 2V_{2\omega_{1}}
\oplus V_{3\omega_{1}-2\psi}\oplus V_{0}\oplus V_{4\omega_{1}-4\psi}\oplus V_{\omega_{1}-2\psi}\oplus V_{-4\psi}\)
Made total 471172 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{10}_1\) ↪ \(C^{1}_4\)
7 out of 46
Subalgebra type: \(\displaystyle A^{10}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle B^{1}_2\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2\)
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{10}_1+A^{1}_1\) , \(\displaystyle A^{10}_1+A^{2}_1\) , \(\displaystyle 2A^{10}_1\) , \(\displaystyle A^{10}_1+2A^{1}_1\) , \(\displaystyle B^{1}_2+A^{10}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{10}_1\): (6, 8, 8, 4): 20
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}+g_{-14}\)
Positive simple generators: \(\displaystyle 4g_{14}+3g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/5\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}20\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{1}}\oplus 4V_{3\omega_{1}}\oplus V_{2\omega_{1}}\oplus 10V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}-\psi_{1}+2\psi_{2}}\oplus V_{3\omega_{1}+\psi_{1}}\oplus V_{-2\psi_{1}+4\psi_{2}}\oplus V_{2\psi_{2}}
\oplus V_{2\psi_{1}}\oplus V_{2\omega_{1}}\oplus V_{3\omega_{1}-\psi_{1}}\oplus V_{3\omega_{1}+\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}+2\psi_{2}}
\oplus 2V_{0}\oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}}\oplus V_{-2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}\)
Made total 1778 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{11}_1\) ↪ \(C^{1}_4\)
8 out of 46
Subalgebra type: \(\displaystyle A^{11}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_3\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{11}_1+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{11}_1\): (6, 8, 10, 5): 22
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}+g_{-10}+g_{-14}\)
Positive simple generators: \(\displaystyle 4g_{14}+g_{10}+3g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/11\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}22\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{1}}\oplus V_{4\omega_{1}}\oplus 2V_{3\omega_{1}}\oplus 3V_{2\omega_{1}}\oplus 2V_{\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+2\psi}\oplus V_{4\psi}\oplus V_{4\omega_{1}}\oplus V_{\omega_{1}+2\psi}\oplus 3V_{2\omega_{1}}\oplus V_{3\omega_{1}-2\psi}
\oplus V_{0}\oplus V_{\omega_{1}-2\psi}\oplus V_{-4\psi}\)
Made total 829370 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{12}_1\) ↪ \(C^{1}_4\)
9 out of 46
Subalgebra type: \(\displaystyle A^{12}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 0)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{12}_1\): (6, 8, 10, 6): 24
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}+g_{-7}+g_{-14}\)
Positive simple generators: \(\displaystyle 4g_{14}+g_{7}+3g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/6\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}24\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{1}}\oplus 2V_{4\omega_{1}}\oplus 6V_{2\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{6\omega_{1}}\oplus V_{4\omega_{1}+\psi}\oplus V_{2\omega_{1}+2\psi}\oplus V_{2\omega_{1}+\psi}\oplus V_{4\omega_{1}-\psi}\oplus 2V_{2\omega_{1}}
\oplus V_{2\omega_{1}-\psi}\oplus V_{0}\oplus V_{2\omega_{1}-2\psi}\)
Made total 13313898 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{20}_1\) ↪ \(C^{1}_4\)
10 out of 46
Subalgebra type: \(\displaystyle A^{20}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{20}_1\): (6, 12, 14, 8): 40
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-2}+g_{-7}+g_{-8}\)
Positive simple generators: \(\displaystyle 3g_{8}+4g_{7}+3g_{2}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/10\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}40\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 3V_{6\omega_{1}}\oplus V_{4\omega_{1}}\oplus 3V_{2\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{6\omega_{1}+2\psi}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{1}+2\psi}\oplus V_{4\omega_{1}}\oplus V_{6\omega_{1}-2\psi}\oplus V_{2\omega_{1}}
\oplus V_{0}\oplus V_{2\omega_{1}-2\psi}\)
Made total 7951224 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{35}_1\) ↪ \(C^{1}_4\)
11 out of 46
Subalgebra type: \(\displaystyle A^{35}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_3\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{35}_1+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{35}_1\): (10, 16, 18, 9): 70
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}+g_{-2}+g_{-10}\)
Positive simple generators: \(\displaystyle 9g_{10}+8g_{2}+5g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/35\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}70\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{10\omega_{1}}\oplus V_{6\omega_{1}}\oplus 2V_{5\omega_{1}}\oplus V_{2\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{10\omega_{1}}\oplus V_{5\omega_{1}+2\psi}\oplus V_{6\omega_{1}}\oplus V_{4\psi}\oplus V_{5\omega_{1}-2\psi}\oplus V_{2\omega_{1}}\oplus V_{0}
\oplus V_{-4\psi}\)
Made total 7215 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{36}_1\) ↪ \(C^{1}_4\)
12 out of 46
Subalgebra type: \(\displaystyle A^{36}_1\) (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{36}_1\): (10, 16, 18, 10): 72
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}+g_{-2}+g_{-4}+g_{-10}\)
Positive simple generators: \(\displaystyle 9g_{10}+g_{4}+8g_{2}+5g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/18\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}72\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{10\omega_{1}}\oplus 2V_{6\omega_{1}}\oplus V_{4\omega_{1}}\oplus 2V_{2\omega_{1}}\)
Made total 1620703 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{84}_1\) ↪ \(C^{1}_4\)
13 out of 46
Subalgebra type: \(\displaystyle A^{84}_1\) (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{84}_1\): (14, 24, 30, 16): 168
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}+g_{-2}+g_{-3}+g_{-4}\)
Positive simple generators: \(\displaystyle 16g_{4}+15g_{3}+12g_{2}+7g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/42\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}168\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{14\omega_{1}}\oplus V_{10\omega_{1}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{1}}\)
Made total 21930 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(2A^{1}_1\) ↪ \(C^{1}_4\)
14 out of 46
Subalgebra type: \(\displaystyle 2A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_1\) .
Centralizer: \(\displaystyle B^{1}_2\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2\)
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle 3A^{1}_1\) , \(\displaystyle A^{2}_1+2A^{1}_1\) , \(\displaystyle A^{10}_1+2A^{1}_1\) , \(\displaystyle 4A^{1}_1\) , \(\displaystyle B^{1}_2+2A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_1\): (2, 2, 2, 1): 2, \(\displaystyle A^{1}_1\): (0, 2, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{-14}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{14}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus 4V_{\omega_{2}}\oplus 4V_{\omega_{1}}\oplus 10V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{-2\psi_{1}+4\psi_{2}}\oplus V_{2\psi_{2}}\oplus V_{\omega_{2}-\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}-\psi_{1}+2\psi_{2}}
\oplus V_{2\psi_{1}}\oplus V_{\omega_{2}+\psi_{1}}\oplus V_{\omega_{1}+\psi_{1}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}
\oplus V_{-2\psi_{1}+2\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{2}-\psi_{1}}\oplus V_{\omega_{1}-\psi_{1}}\oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}+\psi_{1}-2\psi_{2}}
\oplus V_{\omega_{1}+\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}}\oplus V_{-2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}\)
Made total 365 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{2}_1+A^{1}_1\) ↪ \(C^{1}_4\)
15 out of 46
Subalgebra type: \(\displaystyle A^{2}_1+A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_1\) .
Centralizer: \(\displaystyle A^{1}_1\) + \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_3\)
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{2}_1+2A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (2, 4, 4, 2): 4, \(\displaystyle A^{1}_1\): (0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-15}\), \(\displaystyle g_{-10}\)
Positive simple generators: \(\displaystyle g_{15}\), \(\displaystyle g_{10}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus 2V_{\omega_{2}}\oplus 4V_{\omega_{1}}\oplus 4V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\psi_{2}}\oplus V_{\omega_{1}+\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{2}+2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+\psi_{1}}
\oplus V_{\omega_{1}-\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}}\oplus 2V_{0}
\oplus V_{2\omega_{1}-2\psi_{1}}\oplus V_{\omega_{1}+\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}-2\psi_{2}}\oplus V_{\omega_{1}-\psi_{1}-2\psi_{2}}
\oplus V_{-4\psi_{2}}\)
Made total 405888 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(2A^{2}_1\) ↪ \(C^{1}_4\)
16 out of 46
Subalgebra type: \(\displaystyle 2A^{2}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_1\) .
Centralizer: \(\displaystyle T_{2}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0), (0, 0, 1, 0)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (2, 4, 4, 2): 4, \(\displaystyle A^{2}_1\): (0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-15}\), \(\displaystyle g_{-7}\)
Positive simple generators: \(\displaystyle g_{15}\), \(\displaystyle g_{7}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & 0\\ 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & 0\\ 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 3V_{2\omega_{2}}\oplus 4V_{\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus 2V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{2}+2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}}
\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}}\oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}
\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}}\oplus V_{2\omega_{2}-2\psi_{2}}\)
Made total 3606239 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{3}_1+A^{1}_1\) ↪ \(C^{1}_4\)
17 out of 46
Subalgebra type: \(\displaystyle A^{3}_1+A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{3}_1\) .
Centralizer: \(\displaystyle A^{8}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{3}_1+A^{1}_1\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, 0, 0)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{8}_1+A^{3}_1+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{3}_1\): (2, 4, 6, 3): 6, \(\displaystyle A^{1}_1\): (0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-10}+g_{-15}\), \(\displaystyle g_{-4}\)
Positive simple generators: \(\displaystyle g_{15}+g_{10}\), \(\displaystyle g_{4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/3 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}6 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{2}}\oplus 3V_{\omega_{1}+\omega_{2}}\oplus 6V_{2\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{1}+2\psi}\oplus V_{\omega_{1}+\omega_{2}+\psi}\oplus V_{2\omega_{1}+\psi}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}
\oplus 2V_{2\omega_{1}}\oplus V_{\psi}\oplus V_{\omega_{1}+\omega_{2}-\psi}\oplus V_{2\omega_{1}-\psi}\oplus V_{0}\oplus V_{2\omega_{1}-2\psi}\oplus V_{-\psi}\)
Made total 44235 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(2A^{4}_1\) ↪ \(C^{1}_4\)
18 out of 46
Subalgebra type: \(\displaystyle 2A^{4}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{4}_1\) .
Centralizer: \(\displaystyle A^{4}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle 2A^{4}_1\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, 1, 0)
Contained up to conjugation as a direct summand of: \(\displaystyle 3A^{4}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{4}_1\): (2, 4, 6, 4): 8, \(\displaystyle A^{4}_1\): (2, 4, 2, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-11}+g_{-12}\), \(\displaystyle -g_{-5}+g_{-6}\)
Positive simple generators: \(\displaystyle g_{12}+g_{11}\), \(\displaystyle g_{6}-g_{5}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/2 & 0\\ 0 & 1/2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}8 & 0\\ 0 & 8\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 3V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{1}+2\omega_{2}+2\psi}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\psi}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{1}+2\omega_{2}-2\psi}
\oplus V_{0}\oplus V_{-2\psi}\)
Made total 3764569 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{8}_1+A^{1}_1\) ↪ \(C^{1}_4\)
19 out of 46
Subalgebra type: \(\displaystyle A^{8}_1+A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{8}_1\) .
Centralizer: \(\displaystyle A^{3}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{8}_1+A^{1}_1\)
Basis of Cartan of centralizer: 1 vectors: (2, 0, 0, -1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{8}_1+A^{3}_1+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{8}_1\): (4, 8, 8, 4): 16, \(\displaystyle A^{1}_1\): (0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-6}+g_{-11}\), \(\displaystyle g_{-10}\)
Positive simple generators: \(\displaystyle 2g_{11}+2g_{6}\), \(\displaystyle g_{10}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/4 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}16 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 3V_{4\omega_{1}}\oplus 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\omega_{1}+4\psi}\oplus V_{2\omega_{1}+\omega_{2}+2\psi}\oplus V_{4\psi}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
\oplus V_{2\omega_{1}+\omega_{2}-2\psi}\oplus V_{0}\oplus V_{4\omega_{1}-4\psi}\oplus V_{-4\psi}\)
Made total 614 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{8}_1+A^{3}_1\) ↪ \(C^{1}_4\)
20 out of 46
Subalgebra type: \(\displaystyle A^{8}_1+A^{3}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{8}_1\) .
Centralizer: \(\displaystyle A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_3\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{8}_1+A^{3}_1+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{8}_1\): (4, 8, 8, 4): 16, \(\displaystyle A^{3}_1\): (2, 0, 2, 1): 6
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-5}+g_{-12}\), \(\displaystyle g_{-1}+g_{-10}\)
Positive simple generators: \(\displaystyle 2g_{12}+2g_{5}\), \(\displaystyle g_{10}+g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/4 & 0\\ 0 & 2/3\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}16 & 0\\ 0 & 6\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+\omega_{2}+2\psi}\oplus V_{4\psi}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{1}+\omega_{2}-2\psi}
\oplus V_{0}\oplus V_{-4\psi}\)
Made total 422467 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{8}_1+A^{4}_1\) ↪ \(C^{1}_4\)
21 out of 46
Subalgebra type: \(\displaystyle A^{8}_1+A^{4}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{8}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{8}_1\): (4, 8, 8, 4): 16, \(\displaystyle A^{4}_1\): (2, 0, 2, 2): 8
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-8}+g_{-9}\), \(\displaystyle g_{-1}+g_{-4}+g_{-10}\)
Positive simple generators: \(\displaystyle 2g_{9}+2g_{8}\), \(\displaystyle g_{10}+g_{4}+g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/4 & 0\\ 0 & 1/2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}16 & 0\\ 0 & 8\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus 2V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\)
Made total 4733623 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{9}_1+A^{3}_1\) ↪ \(C^{1}_4\)
22 out of 46
Subalgebra type: \(\displaystyle A^{9}_1+A^{3}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{9}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{9}_1\): (4, 8, 10, 5): 18, \(\displaystyle A^{3}_1\): (2, 0, 0, 1): 6
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-8}+g_{-9}+g_{-10}\), \(\displaystyle g_{-1}+g_{-4}\)
Positive simple generators: \(\displaystyle g_{10}+2g_{9}+2g_{8}\), \(\displaystyle g_{4}+g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/9 & 0\\ 0 & 2/3\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}18 & 0\\ 0 & 6\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{1}}\)
Made total 682856 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{10}_1+A^{1}_1\) ↪ \(C^{1}_4\)
23 out of 46
Subalgebra type: \(\displaystyle A^{10}_1+A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{10}_1\) .
Centralizer: \(\displaystyle A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_3\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{10}_1+2A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{10}_1\): (6, 8, 8, 4): 20, \(\displaystyle A^{1}_1\): (0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-1}+g_{-14}\), \(\displaystyle g_{-10}\)
Positive simple generators: \(\displaystyle 4g_{14}+3g_{1}\), \(\displaystyle g_{10}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}20 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus 2V_{3\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{\omega_{2}}
\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+2\psi}\oplus V_{4\psi}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{\omega_{2}+2\psi}\oplus V_{2\omega_{2}}
\oplus V_{2\omega_{1}}\oplus V_{3\omega_{1}-2\psi}\oplus V_{0}\oplus V_{\omega_{2}-2\psi}\oplus V_{-4\psi}\)
Made total 454 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{10}_1+A^{2}_1\) ↪ \(C^{1}_4\)
24 out of 46
Subalgebra type: \(\displaystyle A^{10}_1+A^{2}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{10}_1\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 0)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{10}_1\): (6, 8, 8, 4): 20, \(\displaystyle A^{2}_1\): (0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-1}+g_{-14}\), \(\displaystyle g_{-7}\)
Positive simple generators: \(\displaystyle 4g_{14}+3g_{1}\), \(\displaystyle g_{7}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}20 & 0\\ 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{1}}\oplus 2V_{3\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}+\psi}\oplus V_{2\omega_{2}+2\psi}\oplus V_{3\omega_{1}+\omega_{2}-\psi}\oplus V_{2\omega_{2}}
\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{2\omega_{2}-2\psi}\)
Made total 637705 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(2A^{10}_1\) ↪ \(C^{1}_4\)
25 out of 46
Subalgebra type: \(\displaystyle 2A^{10}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{10}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{10}_1\): (6, 8, 8, 4): 20, \(\displaystyle A^{10}_1\): (0, 0, 6, 4): 20
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-1}+g_{-14}\), \(\displaystyle g_{-3}+g_{-4}\)
Positive simple generators: \(\displaystyle 4g_{14}+3g_{1}\), \(\displaystyle 4g_{4}+3g_{3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 1/5\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}20 & 0\\ 0 & 20\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{2}}\oplus V_{3\omega_{1}+3\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\)
Made total 2812 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{11}_1+A^{1}_1\) ↪ \(C^{1}_4\)
26 out of 46
Subalgebra type: \(\displaystyle A^{11}_1+A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{11}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{11}_1\): (6, 8, 10, 5): 22, \(\displaystyle A^{1}_1\): (0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-1}+g_{-10}+g_{-14}\), \(\displaystyle g_{-4}\)
Positive simple generators: \(\displaystyle 4g_{14}+g_{10}+3g_{1}\), \(\displaystyle g_{4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/11 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}22 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{1}}\)
Made total 697 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{35}_1+A^{1}_1\) ↪ \(C^{1}_4\)
27 out of 46
Subalgebra type: \(\displaystyle A^{35}_1+A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{35}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{35}_1\): (10, 16, 18, 9): 70, \(\displaystyle A^{1}_1\): (0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-1}+g_{-2}+g_{-10}\), \(\displaystyle g_{-4}\)
Positive simple generators: \(\displaystyle 9g_{10}+8g_{2}+5g_{1}\), \(\displaystyle g_{4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/35 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}70 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{10\omega_{1}}\oplus V_{5\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\)
Made total 537 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_2\) ↪ \(C^{1}_4\)
28 out of 46
Subalgebra type: \(\displaystyle B^{1}_2\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_1\) .
Centralizer: \(\displaystyle B^{1}_2\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2\)
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle B^{1}_2+A^{1}_1\) , \(\displaystyle B^{1}_2+A^{2}_1\) , \(\displaystyle B^{1}_2+A^{10}_1\) , \(\displaystyle B^{1}_2+2A^{1}_1\) , \(\displaystyle 2B^{1}_2\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_2\): (2, 2, 2, 1): 2, (-2, 0, 0, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 10.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{1}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1\\ -1 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -2\\ -2 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{2}}\oplus 4V_{\omega_{2}}\oplus 10V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{-2\psi_{1}+4\psi_{2}}\oplus V_{2\psi_{2}}\oplus V_{\omega_{2}-\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}}\oplus V_{\omega_{2}+\psi_{1}}
\oplus V_{2\omega_{2}}\oplus V_{-2\psi_{1}+2\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{2}-\psi_{1}}\oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}+\psi_{1}-2\psi_{2}}
\oplus V_{-2\psi_{1}}\oplus V_{-2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}\)
Made total 361 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{2}_2\) ↪ \(C^{1}_4\)
29 out of 46
Subalgebra type: \(\displaystyle A^{2}_2\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_1\) .
Centralizer: \(\displaystyle A^{1}_1\) + \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_3\)
Basis of Cartan of centralizer: 2 vectors: (1, 0, -1, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{2}_2+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_2\): (2, 4, 4, 2): 4, (0, -2, 0, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: \(\displaystyle g_{-15}\), \(\displaystyle g_{2}\)
Positive simple generators: \(\displaystyle g_{15}\), \(\displaystyle g_{-2}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & -1/2\\ -1/2 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & -2\\ -2 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{\omega_{2}}\oplus 2V_{\omega_{1}}\oplus 4V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{2}+2\psi_{2}}
\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{0}\oplus V_{2\omega_{2}-2\psi_{1}}\oplus V_{\omega_{1}-2\psi_{2}}\oplus V_{\omega_{2}-2\psi_{1}-2\psi_{2}}
\oplus V_{-2\psi_{1}-4\psi_{2}}\)
Made total 2597 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{2}_2\) ↪ \(C^{1}_4\)
30 out of 46
Subalgebra type: \(\displaystyle B^{2}_2\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_1\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{2}_2\): (2, 4, 4, 2): 4, (-2, -4, -2, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 10.
Negative simple generators: \(\displaystyle g_{-15}\), \(\displaystyle g_{8}+g_{2}\)
Positive simple generators: \(\displaystyle g_{15}\), \(\displaystyle g_{-2}+g_{-8}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & -1/2\\ -1/2 & 1/2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & -4\\ -4 & 8\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 3V_{2\omega_{2}}\oplus V_{\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{2}+2\psi}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}}\oplus V_{0}\oplus V_{2\omega_{2}-2\psi}\)
Made total 3227937 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(3A^{1}_1\) ↪ \(C^{1}_4\)
31 out of 46
Subalgebra type: \(\displaystyle 3A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle 2A^{1}_1\) .
Centralizer: \(\displaystyle A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_3\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle 4A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_1\): (2, 2, 2, 1): 2, \(\displaystyle A^{1}_1\): (0, 2, 2, 1): 2, \(\displaystyle A^{1}_1\): (0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{-14}\), \(\displaystyle g_{-10}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{14}\), \(\displaystyle g_{10}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}
\oplus V_{2\omega_{1}}\oplus 2V_{\omega_{3}}\oplus 2V_{\omega_{2}}\oplus 2V_{\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\psi}\oplus V_{\omega_{3}+2\psi}\oplus V_{\omega_{2}+2\psi}\oplus V_{\omega_{1}+2\psi}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}
\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{\omega_{3}-2\psi}
\oplus V_{\omega_{2}-2\psi}\oplus V_{\omega_{1}-2\psi}\oplus V_{-4\psi}\)
Made total 450 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{2}_1+2A^{1}_1\) ↪ \(C^{1}_4\)
32 out of 46
Subalgebra type: \(\displaystyle A^{2}_1+2A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_1+A^{1}_1\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (2, 4, 4, 2): 4, \(\displaystyle A^{1}_1\): (0, 0, 2, 1): 2, \(\displaystyle A^{1}_1\): (0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \(\displaystyle g_{-15}\), \(\displaystyle g_{-10}\), \(\displaystyle g_{-4}\)
Positive simple generators: \(\displaystyle g_{15}\), \(\displaystyle g_{10}\), \(\displaystyle g_{4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}
\oplus 3V_{2\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{1}+2\psi}\oplus V_{\omega_{1}+\omega_{3}+\psi}\oplus V_{\omega_{1}+\omega_{2}+\psi}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}
\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{3}-\psi}\oplus V_{\omega_{1}+\omega_{2}-\psi}\oplus V_{0}\oplus V_{2\omega_{1}-2\psi}\)
Made total 35637 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(3A^{4}_1\) ↪ \(C^{1}_4\)
33 out of 46
Subalgebra type: \(\displaystyle 3A^{4}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle 2A^{4}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{4}_1\): (2, 4, 6, 4): 8, \(\displaystyle A^{4}_1\): (2, 4, 2, 0): 8, \(\displaystyle A^{4}_1\): (2, 0, 2, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \(\displaystyle g_{-11}+g_{-12}\), \(\displaystyle -g_{-5}+g_{-6}\), \(\displaystyle -g_{-1}+g_{-3}\)
Positive simple generators: \(\displaystyle g_{12}+g_{11}\), \(\displaystyle g_{6}-g_{5}\), \(\displaystyle g_{3}-g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/2 & 0 & 0\\ 0 & 1/2 & 0\\ 0 & 0 & 1/2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}8 & 0 & 0\\ 0 & 8 & 0\\ 0 & 0 & 8\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{1}+2\omega_{2}+2\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\)
Made total 8526 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{8}_1+A^{3}_1+A^{1}_1\) ↪ \(C^{1}_4\)
34 out of 46
Subalgebra type: \(\displaystyle A^{8}_1+A^{3}_1+A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{8}_1+A^{3}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{8}_1\): (4, 8, 8, 4): 16, \(\displaystyle A^{3}_1\): (2, 0, 2, 1): 6, \(\displaystyle A^{1}_1\): (0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \(\displaystyle g_{-5}+g_{-12}\), \(\displaystyle g_{-1}+g_{-10}\), \(\displaystyle g_{-4}\)
Positive simple generators: \(\displaystyle 2g_{12}+2g_{5}\), \(\displaystyle g_{10}+g_{1}\), \(\displaystyle g_{4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/4 & 0 & 0\\ 0 & 2/3 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}16 & 0 & 0\\ 0 & 6 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\)
Made total 634 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{10}_1+2A^{1}_1\) ↪ \(C^{1}_4\)
35 out of 46
Subalgebra type: \(\displaystyle A^{10}_1+2A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{10}_1+A^{1}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{10}_1\): (6, 8, 8, 4): 20, \(\displaystyle A^{1}_1\): (0, 0, 2, 1): 2, \(\displaystyle A^{1}_1\): (0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \(\displaystyle g_{-1}+g_{-14}\), \(\displaystyle g_{-10}\), \(\displaystyle g_{-4}\)
Positive simple generators: \(\displaystyle 4g_{14}+3g_{1}\), \(\displaystyle g_{10}\), \(\displaystyle g_{4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/5 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}20 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{3}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}
\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\)
Made total 537 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_2+A^{1}_1\) ↪ \(C^{1}_4\)
36 out of 46
Subalgebra type: \(\displaystyle B^{1}_2+A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle B^{1}_2\) .
Centralizer: \(\displaystyle A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_3\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle B^{1}_2+2A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_2\): (2, 2, 2, 1): 2, (-2, 0, 0, 0): 4, \(\displaystyle A^{1}_1\): (0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{1}\), \(\displaystyle g_{-10}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-1}\), \(\displaystyle g_{10}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 2V_{\omega_{3}}\oplus 2V_{\omega_{2}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\psi}\oplus V_{\omega_{3}+2\psi}\oplus V_{\omega_{2}+2\psi}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}
\oplus V_{0}\oplus V_{\omega_{3}-2\psi}\oplus V_{\omega_{2}-2\psi}\oplus V_{-4\psi}\)
Made total 446 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_2+A^{2}_1\) ↪ \(C^{1}_4\)
37 out of 46
Subalgebra type: \(\displaystyle B^{1}_2+A^{2}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle B^{1}_2\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 0)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_2\): (2, 2, 2, 1): 2, (-2, 0, 0, 0): 4, \(\displaystyle A^{2}_1\): (0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{1}\), \(\displaystyle g_{-7}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-1}\), \(\displaystyle g_{7}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 3V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{3}+2\psi}\oplus V_{\omega_{2}+\omega_{3}+\psi}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{2}+\omega_{3}-\psi}
\oplus V_{0}\oplus V_{2\omega_{3}-2\psi}\)
Made total 630863 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_2+A^{10}_1\) ↪ \(C^{1}_4\)
38 out of 46
Subalgebra type: \(\displaystyle B^{1}_2+A^{10}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle B^{1}_2\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_2\): (2, 2, 2, 1): 2, (-2, 0, 0, 0): 4, \(\displaystyle A^{10}_1\): (0, 0, 6, 4): 20
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{1}\), \(\displaystyle g_{-3}+g_{-4}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-1}\), \(\displaystyle 4g_{4}+3g_{3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 1/5\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 20\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{3}}\oplus V_{\omega_{2}+3\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\)
Made total 2812 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{2}_2+A^{1}_1\) ↪ \(C^{1}_4\)
39 out of 46
Subalgebra type: \(\displaystyle A^{2}_2+A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_2\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (2, 0, -2, -1)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_2\): (2, 4, 4, 2): 4, (0, -2, 0, 0): 4, \(\displaystyle A^{1}_1\): (0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \(\displaystyle g_{-15}\), \(\displaystyle g_{2}\), \(\displaystyle g_{-4}\)
Positive simple generators: \(\displaystyle g_{15}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}
\oplus V_{2\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{1}+4\psi}\oplus V_{\omega_{1}+\omega_{3}+2\psi}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{0}\oplus V_{\omega_{2}+\omega_{3}-2\psi}
\oplus V_{2\omega_{2}-4\psi}\)
Made total 444 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(C^{1}_3\) ↪ \(C^{1}_4\)
40 out of 46
Subalgebra type: \(\displaystyle C^{1}_3\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_2\) .
Centralizer: \(\displaystyle A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_3\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle C^{1}_3+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle C^{1}_3\): (2, 4, 4, 2): 4, (0, -2, 0, 0): 4, (0, 0, -2, -1): 2
Dimension of subalgebra generated by predefined or computed generators: 21.
Negative simple generators: \(\displaystyle g_{-15}\), \(\displaystyle g_{2}\), \(\displaystyle g_{10}\)
Positive simple generators: \(\displaystyle g_{15}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{-10}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & -1\\ 0 & -1 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & -2\\ 0 & -2 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{1}}\oplus 2V_{\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\psi}\oplus V_{\omega_{1}+2\psi}\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{\omega_{1}-2\psi}\oplus V_{-4\psi}\)
Made total 446 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{2}_3\) ↪ \(C^{1}_4\)
41 out of 46
Subalgebra type: \(\displaystyle A^{2}_3\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_2\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, -1)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_3\): (2, 4, 4, 2): 4, (0, -2, 0, 0): 4, (0, 0, -2, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 15.
Negative simple generators: \(\displaystyle g_{-15}\), \(\displaystyle g_{2}\), \(\displaystyle g_{3}\)
Positive simple generators: \(\displaystyle g_{15}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{-3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & -1/2\\ 0 & -1/2 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & -2\\ 0 & -2 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{1}+2\psi}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{0}\oplus V_{2\omega_{3}-2\psi}\)
Made total 444 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(4A^{1}_1\) ↪ \(C^{1}_4\)
42 out of 46
Subalgebra type: \(\displaystyle 4A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle 3A^{1}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_1\): (2, 2, 2, 1): 2, \(\displaystyle A^{1}_1\): (0, 2, 2, 1): 2, \(\displaystyle A^{1}_1\): (0, 0, 2, 1): 2, \(\displaystyle A^{1}_1\): (0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 12.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{-14}\), \(\displaystyle g_{-10}\), \(\displaystyle g_{-4}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{14}\), \(\displaystyle g_{10}\), \(\displaystyle g_{4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{3}}
\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\)
Made total 533 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_2+2A^{1}_1\) ↪ \(C^{1}_4\)
43 out of 46
Subalgebra type: \(\displaystyle B^{1}_2+2A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle B^{1}_2+A^{1}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_2\): (2, 2, 2, 1): 2, (-2, 0, 0, 0): 4, \(\displaystyle A^{1}_1\): (0, 0, 2, 1): 2, \(\displaystyle A^{1}_1\): (0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 16.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{1}\), \(\displaystyle g_{-10}\), \(\displaystyle g_{-4}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-1}\), \(\displaystyle g_{10}\), \(\displaystyle g_{4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}
\oplus V_{2\omega_{2}}\)
Made total 529 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(2B^{1}_2\) ↪ \(C^{1}_4\)
44 out of 46
Subalgebra type: \(\displaystyle 2B^{1}_2\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle B^{1}_2+A^{1}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_2\): (2, 2, 2, 1): 2, (-2, 0, 0, 0): 4, \(\displaystyle B^{1}_2\): (0, 0, 2, 1): 2, (0, 0, -2, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 20.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{1}\), \(\displaystyle g_{-10}\), \(\displaystyle g_{3}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-1}\), \(\displaystyle g_{10}\), \(\displaystyle g_{-3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & 0 & 2 & -1\\ 0 & 0 & -1 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 2 & -2\\ 0 & 0 & -2 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{2\omega_{2}}\)
Made total 529 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(C^{1}_3+A^{1}_1\) ↪ \(C^{1}_4\)
45 out of 46
Subalgebra type: \(\displaystyle C^{1}_3+A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle C^{1}_3\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle C^{1}_3\): (2, 4, 4, 2): 4, (0, -2, 0, 0): 4, (0, 0, -2, -1): 2, \(\displaystyle A^{1}_1\): (0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 24.
Negative simple generators: \(\displaystyle g_{-15}\), \(\displaystyle g_{2}\), \(\displaystyle g_{10}\), \(\displaystyle g_{-4}\)
Positive simple generators: \(\displaystyle g_{15}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{-10}\), \(\displaystyle g_{4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & -1 & 0\\ 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & -2 & 0\\ 0 & -2 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{1}}\)
Made total 529 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(C^{1}_4\) ↪ \(C^{1}_4\)
46 out of 46
Subalgebra type: \(\displaystyle C^{1}_4\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_3\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle C^{1}_4\): (2, 4, 4, 2): 4, (0, -2, 0, 0): 4, (0, 0, -2, 0): 4, (0, 0, 0, -1): 2
Dimension of subalgebra generated by predefined or computed generators: 36.
Negative simple generators: \(\displaystyle g_{-15}\), \(\displaystyle g_{2}\), \(\displaystyle g_{3}\), \(\displaystyle g_{4}\)
Positive simple generators: \(\displaystyle g_{15}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{-3}\), \(\displaystyle g_{-4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & -1/2 & 0\\ 0 & -1/2 & 1 & -1\\ 0 & 0 & -1 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & -2 & 0\\ 0 & -2 & 4 & -2\\ 0 & 0 & -2 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{1}}\)
Made total 527 arithmetic operations while solving the Serre relations polynomial system.

Of the 13 h element conjugacy classes 6 had their Weyl group orbits computed and buffered. The h elements and their computed orbit sizes follow.
h elementorbit size
(14, 24, 30, 16)size not computed
(10, 16, 18, 10)size not computed
(10, 16, 18, 9)size not computed
(6, 12, 14, 8)size not computed
(6, 8, 10, 6)size not computed
(6, 8, 10, 5)size not computed
(6, 8, 8, 4)48
(4, 8, 10, 5)96
(4, 8, 8, 4)size not computed
(2, 4, 6, 4)16
(2, 4, 6, 3)32
(2, 4, 4, 2)24
(2, 2, 2, 1)8

Number of sl(2) subalgebras: 13.
Let h be in the Cartan subalgebra. Let \(\alpha_1, ..., \alpha_n\) be simple roots with respect to h. Then the h-characteristic, as defined by E. Dynkin, is the n-tuple \((\alpha_1(h), ..., \alpha_n(h))\).

The actual realization of h. The coordinates of h are given with respect to the fixed original simple basis. Note that the h-characteristic is computed using a possibly different simple basis, more precisely, with respect to any h-positive simple basis.
A regular semisimple subalgebra might contain an sl(2) such that the sl(2) has no centralizer in the regular semisimple subalgebra, but the regular semisimple subalgebra might fail to be minimal containing. This happens when another minimal containing regular semisimple subalgebra of equal rank nests as a root subalgebra in the containing SA. See Dynkin, Semisimple Lie subalgebras of semisimple Lie algebras, remark before Theorem 10.4.
The \(sl(2)\) submodules of the ambient Lie algebra are parametrized by their highest weight with respect to the Cartan element h of \(sl(2)\). In turn, the highest weight is a positive integer multiple of the fundamental highest weight \(\psi\). \(V_{l\psi}\) is \(l + 1\)-dimensional.


Type + realization linkh-CharacteristicRealization of hsl(2)-module decomposition of the ambient Lie algebra
\(\psi=\) the fundamental \(sl(2)\)-weight.
Centralizer dimensionType of semisimple part of centralizer, if knownThe square of the length of the weight dual to h.Dynkin index Minimal containing regular semisimple SAsContaining regular semisimple SAs in which the sl(2) has no centralizer
\(A^{84}_1\)(2, 2, 2, 2)(14, 24, 30, 16)\(V_{14\psi}+V_{10\psi}+V_{6\psi}+V_{2\psi}\)
0 \(\displaystyle 0\)16884C^{1}_4; C^{1}_4;
\(A^{36}_1\)(2, 2, 0, 2)(10, 16, 18, 10)\(V_{10\psi}+2V_{6\psi}+V_{4\psi}+2V_{2\psi}\)
0 \(\displaystyle 0\)7236C^{1}_4; C^{1}_3+A^{1}_1; C^{1}_4; C^{1}_3+A^{1}_1;
\(A^{35}_1\)(2, 2, 1, 0)(10, 16, 18, 9)\(V_{10\psi}+V_{6\psi}+2V_{5\psi}+V_{2\psi}+3V_{0}\)
3 \(\displaystyle A^{1}_1\)7035C^{1}_3; C^{1}_3;
\(A^{20}_1\)(0, 2, 0, 2)(6, 12, 14, 8)\(3V_{6\psi}+V_{4\psi}+3V_{2\psi}+V_{0}\)
1 \(\displaystyle 0\)40202B^{1}_2; A^{2}_3; 2B^{1}_2; A^{2}_3;
\(A^{12}_1\)(2, 0, 0, 2)(6, 8, 10, 6)\(V_{6\psi}+2V_{4\psi}+6V_{2\psi}+V_{0}\)
1 \(\displaystyle 0\)2412C^{1}_3+A^{1}_1; B^{1}_2+2A^{1}_1; B^{1}_2+A^{2}_1; C^{1}_3+A^{1}_1; B^{1}_2+2A^{1}_1; B^{1}_2+A^{2}_1;
\(A^{11}_1\)(2, 0, 1, 0)(6, 8, 10, 5)\(V_{6\psi}+V_{4\psi}+2V_{3\psi}+3V_{2\psi}+2V_{\psi}+3V_{0}\)
3 \(\displaystyle A^{1}_1\)2211C^{1}_3; B^{1}_2+A^{1}_1; C^{1}_3; B^{1}_2+A^{1}_1;
\(A^{10}_1\)(2, 1, 0, 0)(6, 8, 8, 4)\(V_{6\psi}+4V_{3\psi}+V_{2\psi}+10V_{0}\)
10 \(\displaystyle B^{1}_2\)2010B^{1}_2; B^{1}_2;
\(A^{9}_1\)(0, 1, 1, 0)(4, 8, 10, 5)\(3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}\)
3 not computed189A^{2}_2+A^{1}_1; A^{2}_2+A^{1}_1;
\(A^{8}_1\)(0, 2, 0, 0)(4, 8, 8, 4)\(3V_{4\psi}+5V_{2\psi}+6V_{0}\)
6 not computed168A^{2}_2; A^{2}_2;
\(A^{4}_1\)(0, 0, 0, 2)(2, 4, 6, 4)\(10V_{2\psi}+6V_{0}\)
6 not computed844A^{1}_1; A^{2}_1+2A^{1}_1; 2A^{2}_1; 4A^{1}_1; A^{2}_1+2A^{1}_1; 2A^{2}_1;
\(A^{3}_1\)(0, 0, 1, 0)(2, 4, 6, 3)\(6V_{2\psi}+6V_{\psi}+6V_{0}\)
6 not computed633A^{1}_1; A^{2}_1+A^{1}_1; 3A^{1}_1; A^{2}_1+A^{1}_1;
\(A^{2}_1\)(0, 1, 0, 0)(2, 4, 4, 2)\(3V_{2\psi}+8V_{\psi}+11V_{0}\)
11 \(\displaystyle B^{1}_2\)422A^{1}_1; A^{2}_1; 2A^{1}_1; A^{2}_1;
\(A^{1}_1\)(1, 0, 0, 0)(2, 2, 2, 1)\(V_{2\psi}+6V_{\psi}+21V_{0}\)
21 \(\displaystyle C^{1}_3\)21A^{1}_1; A^{1}_1;


Length longest root ambient algebra squared/4= 1/2

Given a root subsystem P, and a root subsubsystem P_0, in (10.2) of Semisimple subalgebras of semisimple Lie algebras, E. Dynkin defines a numerical constant e(P, P_0) (which we call Dynkin epsilon).
In Theorem 10.3, Dynkin proves that if an sl(2) is an S-subalgebra in the root subalgebra generated by P, such that it has characteristic 2 for all simple roots of P lying in P_0, then e(P, P_0)= 0. It turns out by direct computation that, in the current case of C^{1}_4, e(P,P_0)= 0 implies that an S-sl(2) subalgebra of the root subalgebra generated by P with characteristic with 2's in the simple roots of P_0 always exists. Note that Theorem 10.3 is stated in one direction only.

h-characteristic: (2, 2, 2, 2)
Length of the weight dual to h: 168
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: C^{1}_4
sl(2)-module decomposition of the ambient Lie algebra: \(V_{14\psi}+V_{10\psi}+V_{6\psi}+V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 16h_{4}+30h_{3}+24h_{2}+14h_{1}\)
\( e = 8/5g_{4}+3g_{3}+6g_{2}+7g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{1} x_{5} -14~\\2x_{2} x_{6} -24~\\2x_{3} x_{7} -30~\\x_{4} x_{8} -16~\\\end{array}\)


h-characteristic: (2, 2, 0, 2)
Length of the weight dual to h: 72
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: C^{1}_4 Containing regular semisimple subalgebra number 2: C^{1}_3+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{10\psi}+2V_{6\psi}+V_{4\psi}+2V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{4}+18h_{3}+16h_{2}+10h_{1}\)
\( e = 2606/5671g_{10}+1313/5671g_{7}+148/107g_{6}-37/5671g_{4}+56/107g_{2}+5g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{5} x_{12} +x_{3} x_{11} -x_{2} x_{10} ~\\x_{6} x_{11} +x_{5} x_{9} -x_{4} x_{8} ~\\2x_{1} x_{7} -10~\\2x_{4} x_{10} +2x_{2} x_{8} -16~\\2x_{5} x_{11} +2x_{3} x_{9} +2x_{2} x_{8} -18~\\x_{6} x_{12} +2x_{5} x_{11} +x_{3} x_{9} -10~\\\end{array}\)


h-characteristic: (2, 2, 1, 0)
Length of the weight dual to h: 70
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: C^{1}_3
sl(2)-module decomposition of the ambient Lie algebra: \(V_{10\psi}+V_{6\psi}+2V_{5\psi}+V_{2\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 9h_{4}+18h_{3}+16h_{2}+10h_{1}\)
\( e = 9/5g_{10}+4g_{2}+5g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{1} x_{4} -10~\\2x_{2} x_{5} -16~\\2x_{3} x_{6} -18~\\x_{3} x_{6} -9~\\\end{array}\)


h-characteristic: (0, 2, 0, 2)
Length of the weight dual to h: 40
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 2B^{1}_2 Containing regular semisimple subalgebra number 2: A^{2}_3
sl(2)-module decomposition of the ambient Lie algebra: \(3V_{6\psi}+V_{4\psi}+3V_{2\psi}+V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 8h_{4}+14h_{3}+12h_{2}+6h_{1}\)
\( e = 4g_{10}+3/10g_{6}+3/2g_{5}+4/5g_{4}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{2} x_{6} -6~\\2x_{4} x_{8} +2x_{2} x_{6} -12~\\2x_{4} x_{8} +2x_{1} x_{5} -14~\\x_{3} x_{7} +x_{1} x_{5} -8~\\\end{array}\)


h-characteristic: (2, 0, 0, 2)
Length of the weight dual to h: 24
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: C^{1}_3+A^{1}_1 Containing regular semisimple subalgebra number 2: B^{1}_2+2A^{1}_1 Containing regular semisimple subalgebra number 3: B^{1}_2+A^{2}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{6\psi}+2V_{4\psi}+6V_{2\psi}+V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 6h_{4}+10h_{3}+8h_{2}+6h_{1}\)
\( e = 1/5g_{14}+28192/67071g_{10}+294/283g_{8}+8366/67071g_{7}+111/566g_{5}-421/134142g_{4}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{5} x_{12} +x_{2} x_{11} -x_{1} x_{10} ~\\x_{6} x_{11} +x_{5} x_{8} -x_{4} x_{7} ~\\2x_{4} x_{10} +2x_{1} x_{7} -6~\\2x_{4} x_{10} +2x_{3} x_{9} +2x_{1} x_{7} -8~\\2x_{5} x_{11} +2x_{3} x_{9} +2x_{2} x_{8} +2x_{1} x_{7} -10~\\x_{6} x_{12} +2x_{5} x_{11} +x_{3} x_{9} +x_{2} x_{8} -6~\\\end{array}\)


h-characteristic: (2, 0, 1, 0)
Length of the weight dual to h: 22
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: C^{1}_3 Containing regular semisimple subalgebra number 2: B^{1}_2+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{6\psi}+V_{4\psi}+2V_{3\psi}+3V_{2\psi}+2V_{\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 5h_{4}+10h_{3}+8h_{2}+6h_{1}\)
\( e = 2111/11022g_{14}+1330/5511g_{12}-68/5511g_{10}+201/167g_{5}+60/167g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{4} x_{10} +x_{2} x_{9} -x_{1} x_{8} ~\\x_{5} x_{9} +x_{4} x_{7} -x_{3} x_{6} ~\\2x_{3} x_{8} +2x_{1} x_{6} -6~\\2x_{4} x_{9} +2x_{2} x_{7} +2x_{1} x_{6} -8~\\2x_{5} x_{10} +4x_{4} x_{9} +2x_{2} x_{7} -10~\\x_{5} x_{10} +2x_{4} x_{9} +x_{2} x_{7} -5~\\\end{array}\)


h-characteristic: (2, 1, 0, 0)
Length of the weight dual to h: 20
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: B^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(V_{6\psi}+4V_{3\psi}+V_{2\psi}+10V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 4h_{4}+8h_{3}+8h_{2}+6h_{1}\)
\( e = 4g_{14}+3/2g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{2} x_{4} -6~\\2x_{1} x_{3} -8~\\2x_{1} x_{3} -8~\\x_{1} x_{3} -4~\\\end{array}\)


h-characteristic: (0, 1, 1, 0)
Length of the weight dual to h: 18
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{2}_2+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 5h_{4}+10h_{3}+8h_{2}+4h_{1}\)
\( e = 2g_{11}+1/5g_{10}+g_{6}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{1} x_{4} -4~\\2x_{2} x_{5} +2x_{1} x_{4} -8~\\2x_{3} x_{6} +2x_{2} x_{5} +2x_{1} x_{4} -10~\\x_{3} x_{6} +2x_{1} x_{4} -5~\\\end{array}\)


h-characteristic: (0, 2, 0, 0)
Length of the weight dual to h: 16
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{2}_2
sl(2)-module decomposition of the ambient Lie algebra: \(3V_{4\psi}+5V_{2\psi}+6V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 4h_{4}+8h_{3}+8h_{2}+4h_{1}\)
\( e = 2g_{13}+g_{2}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{1} x_{3} -4~\\2x_{2} x_{4} +2x_{1} x_{3} -8~\\4x_{1} x_{3} -8~\\2x_{1} x_{3} -4~\\\end{array}\)


h-characteristic: (0, 0, 0, 2)
Length of the weight dual to h: 8
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: 4A^{1}_1 Containing regular semisimple subalgebra number 2: A^{2}_1+2A^{1}_1 Containing regular semisimple subalgebra number 3: 2A^{2}_1
sl(2)-module decomposition of the ambient Lie algebra: \(10V_{2\psi}+6V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 4h_{4}+6h_{3}+4h_{2}+2h_{1}\)
\( e = g_{16}+1/2g_{14}+1/5g_{10}+1/10g_{4}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{1} x_{5} -2~\\2x_{2} x_{6} +2x_{1} x_{5} -4~\\2x_{3} x_{7} +2x_{2} x_{6} +2x_{1} x_{5} -6~\\x_{4} x_{8} +x_{3} x_{7} +x_{2} x_{6} +x_{1} x_{5} -4~\\\end{array}\)


h-characteristic: (0, 0, 1, 0)
Length of the weight dual to h: 6
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 3A^{1}_1 Containing regular semisimple subalgebra number 2: A^{2}_1+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(6V_{2\psi}+6V_{\psi}+6V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 3h_{4}+6h_{3}+4h_{2}+2h_{1}\)
\( e = g_{16}+1/2g_{14}+1/5g_{10}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{1} x_{4} -2~\\2x_{2} x_{5} +2x_{1} x_{4} -4~\\2x_{3} x_{6} +2x_{2} x_{5} +2x_{1} x_{4} -6~\\x_{3} x_{6} +x_{2} x_{5} +x_{1} x_{4} -3~\\\end{array}\)


h-characteristic: (0, 1, 0, 0)
Length of the weight dual to h: 4
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 2A^{1}_1 Containing regular semisimple subalgebra number 2: A^{2}_1
sl(2)-module decomposition of the ambient Lie algebra: \(3V_{2\psi}+8V_{\psi}+11V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 2h_{4}+4h_{3}+4h_{2}+2h_{1}\)
\( e = g_{16}+1/2g_{14}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{1} x_{3} -2~\\2x_{2} x_{4} +2x_{1} x_{3} -4~\\2x_{2} x_{4} +2x_{1} x_{3} -4~\\x_{2} x_{4} +x_{1} x_{3} -2~\\\end{array}\)


h-characteristic: (1, 0, 0, 0)
Length of the weight dual to h: 2
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{2\psi}+6V_{\psi}+21V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = h_{4}+2h_{3}+2h_{2}+2h_{1}\)
\( e = g_{16}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{1} x_{2} -2~\\2x_{1} x_{2} -2~\\2x_{1} x_{2} -2~\\x_{1} x_{2} -1~\\\end{array}\)


Calculator input for loading subalgebras directly without recomputation. Subalgebras found so far: 46
Orbit sizes: A^84_1: n/a; A^36_1: n/a; A^35_1: n/a; A^20_1: n/a; A^12_1: n/a; A^11_1: n/a; A^10_1: 48; A^9_1: 96; A^8_1: n/a; A^4_1: 16; A^3_1: 32; A^2_1: 24; A^1_1: 8;
Current subalgebra chain length: 0


SetOutputFile("subalgebras_C^{1}_4");
LoadSemisimpleSubalgebras {}(AmbientDynkinType=C^{1}{}\left(4\right);CurrentChain=\left(\right);NumExploredTypes=\left(\right);NumExploredHs=\left(\right);Subalgebras=\left((DynkinType=A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right)\right)), (DynkinType=A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 2 \end{pmatrix};generators=\left(g{}\left(-15\right), g{}\left(15\right)\right)), (DynkinType=A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 3 \end{pmatrix};generators=\left(g{}\left(-10\right)+g{}\left(-15\right), g{}\left(10\right)+g{}\left(15\right)\right)), (DynkinType=A^{4}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 4 \end{pmatrix};generators=\left(g{}\left(-15\right)+g{}\left(-7\right), g{}\left(15\right)+g{}\left(7\right)\right)), (DynkinType=A^{8}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 4 \end{pmatrix};generators=\left(g{}\left(-11\right)+g{}\left(-6\right), 2 g{}\left(11\right)+2 g{}\left(6\right)\right)), (DynkinType=A^{9}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 10 & 5 \end{pmatrix};generators=\left(g{}\left(-6\right)+g{}\left(-11\right)+g{}\left(-10\right), 2 g{}\left(6\right)+2 g{}\left(11\right)+g{}\left(10\right)\right)), (DynkinType=A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 4 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-14\right), 3 g{}\left(1\right)+4 g{}\left(14\right)\right)), (DynkinType=A^{11}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 10 & 5 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-14\right)+g{}\left(-10\right), 3 g{}\left(1\right)+4 g{}\left(14\right)+g{}\left(10\right)\right)), (DynkinType=A^{12}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 10 & 6 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-14\right)+g{}\left(-7\right), 3 g{}\left(1\right)+4 g{}\left(14\right)+g{}\left(7\right)\right)), (DynkinType=A^{20}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 12 & 14 & 8 \end{pmatrix};generators=\left(g{}\left(-2\right)+g{}\left(-8\right)+g{}\left(-7\right), 3 g{}\left(2\right)+3 g{}\left(8\right)+4 g{}\left(7\right)\right)), (DynkinType=A^{35}{}\left(1\right);ElementsCartan=\begin{pmatrix}10 & 16 & 18 & 9 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-10\right), 5 g{}\left(1\right)+8 g{}\left(2\right)+9 g{}\left(10\right)\right)), (DynkinType=A^{36}{}\left(1\right);ElementsCartan=\begin{pmatrix}10 & 16 & 18 & 10 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-4\right)+g{}\left(-10\right), 5 g{}\left(1\right)+8 g{}\left(2\right)+g{}\left(4\right)+9 g{}\left(10\right)\right)), (DynkinType=A^{84}{}\left(1\right);ElementsCartan=\begin{pmatrix}14 & 24 & 30 & 16 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-3\right)+g{}\left(-4\right), 7 g{}\left(1\right)+12 g{}\left(2\right)+15 g{}\left(3\right)+16 g{}\left(4\right)\right)), (DynkinType=2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 1\\ 0 & 2 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(-14\right), g{}\left(14\right)\right)), (DynkinType=A^{2}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 2\\ 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-15\right), g{}\left(15\right), g{}\left(-10\right), g{}\left(10\right)\right)), (DynkinType=2 A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 2\\ 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-15\right), g{}\left(15\right), g{}\left(-7\right), g{}\left(7\right)\right)), (DynkinType=A^{3}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 3\\ 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-10\right)+g{}\left(-15\right), g{}\left(10\right)+g{}\left(15\right), g{}\left(-4\right), g{}\left(4\right)\right)), (DynkinType=2 A^{4}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 4\\ 2 & 4 & 2 & 0 \end{pmatrix};generators=\left(g{}\left(-12\right)+g{}\left(-11\right), g{}\left(12\right)+g{}\left(11\right), g{}\left(-6\right)-g{}\left(-5\right), g{}\left(6\right)-g{}\left(5\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 4\\ 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-11\right)+g{}\left(-6\right), 2 g{}\left(11\right)+2 g{}\left(6\right), g{}\left(-10\right), g{}\left(10\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 4\\ 2 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-5\right)+g{}\left(-12\right), 2 g{}\left(5\right)+2 g{}\left(12\right), g{}\left(-1\right)+g{}\left(-10\right), g{}\left(1\right)+g{}\left(10\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{4}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 4\\ 2 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-9\right)+g{}\left(-8\right), 2 g{}\left(9\right)+2 g{}\left(8\right), g{}\left(-1\right)+g{}\left(-4\right)+g{}\left(-10\right), g{}\left(1\right)+g{}\left(4\right)+g{}\left(10\right)\right)), (DynkinType=A^{9}{}\left(1\right)+A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 10 & 5\\ 2 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-8\right)+g{}\left(-9\right)+g{}\left(-10\right), 2 g{}\left(8\right)+2 g{}\left(9\right)+g{}\left(10\right), g{}\left(-1\right)+g{}\left(-4\right), g{}\left(1\right)+g{}\left(4\right)\right)), (DynkinType=A^{10}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 4\\ 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-14\right), 3 g{}\left(1\right)+4 g{}\left(14\right), g{}\left(-10\right), g{}\left(10\right)\right)), (DynkinType=A^{10}{}\left(1\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 4\\ 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-14\right), 3 g{}\left(1\right)+4 g{}\left(14\right), g{}\left(-7\right), g{}\left(7\right)\right)), (DynkinType=2 A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 4\\ 0 & 0 & 6 & 4 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-14\right), 3 g{}\left(1\right)+4 g{}\left(14\right), g{}\left(-3\right)+g{}\left(-4\right), 3 g{}\left(3\right)+4 g{}\left(4\right)\right)), (DynkinType=A^{11}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 10 & 5\\ 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-14\right)+g{}\left(-10\right), 3 g{}\left(1\right)+4 g{}\left(14\right)+g{}\left(10\right), g{}\left(-4\right), g{}\left(4\right)\right)), (DynkinType=A^{35}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}10 & 16 & 18 & 9\\ 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-10\right), 5 g{}\left(1\right)+8 g{}\left(2\right)+9 g{}\left(10\right), g{}\left(-4\right), g{}\left(4\right)\right)), (DynkinType=B^{1}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(1\right), g{}\left(-1\right)\right)), (DynkinType=A^{2}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-15\right), g{}\left(15\right), g{}\left(2\right), g{}\left(-2\right)\right)), (DynkinType=B^{2}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 2\\ -2 & -4 & -2 & 0 \end{pmatrix};generators=\left(g{}\left(-15\right), g{}\left(15\right), g{}\left(8\right)+g{}\left(2\right), g{}\left(-8\right)+g{}\left(-2\right)\right)), (DynkinType=3 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 1\\ 0 & 2 & 2 & 1\\ 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(-14\right), g{}\left(14\right), g{}\left(-10\right), g{}\left(10\right)\right)), (DynkinType=A^{2}{}\left(1\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 2\\ 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-15\right), g{}\left(15\right), g{}\left(-10\right), g{}\left(10\right), g{}\left(-4\right), g{}\left(4\right)\right)), (DynkinType=3 A^{4}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 4\\ 2 & 4 & 2 & 0\\ 2 & 0 & 2 & 0 \end{pmatrix};generators=\left(g{}\left(-12\right)+g{}\left(-11\right), g{}\left(12\right)+g{}\left(11\right), g{}\left(-6\right)-g{}\left(-5\right), g{}\left(6\right)-g{}\left(5\right), -g{}\left(-1\right)+g{}\left(-3\right), -g{}\left(1\right)+g{}\left(3\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{3}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 4\\ 2 & 0 & 2 & 1\\ 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-5\right)+g{}\left(-12\right), 2 g{}\left(5\right)+2 g{}\left(12\right), g{}\left(-1\right)+g{}\left(-10\right), g{}\left(1\right)+g{}\left(10\right), g{}\left(-4\right), g{}\left(4\right)\right)), (DynkinType=A^{10}{}\left(1\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 4\\ 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-14\right), 3 g{}\left(1\right)+4 g{}\left(14\right), g{}\left(-10\right), g{}\left(10\right), g{}\left(-4\right), g{}\left(4\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0\\ 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-10\right), g{}\left(10\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0\\ 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-7\right), g{}\left(7\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0\\ 0 & 0 & 6 & 4 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-3\right)+g{}\left(-4\right), 3 g{}\left(3\right)+4 g{}\left(4\right)\right)), (DynkinType=A^{2}{}\left(2\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 2\\ 0 & -2 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-15\right), g{}\left(15\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(-4\right), g{}\left(4\right)\right)), (DynkinType=C^{1}{}\left(3\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 2\\ 0 & -2 & 0 & 0\\ 0 & 0 & -2 & -1 \end{pmatrix};generators=\left(g{}\left(-15\right), g{}\left(15\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(10\right), g{}\left(-10\right)\right)), (DynkinType=A^{2}{}\left(3\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 2\\ 0 & -2 & 0 & 0\\ 0 & 0 & -2 & 0 \end{pmatrix};generators=\left(g{}\left(-15\right), g{}\left(15\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(3\right), g{}\left(-3\right)\right)), (DynkinType=4 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 1\\ 0 & 2 & 2 & 1\\ 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(-14\right), g{}\left(14\right), g{}\left(-10\right), g{}\left(10\right), g{}\left(-4\right), g{}\left(4\right)\right)), (DynkinType=B^{1}{}\left(2\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0\\ 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-10\right), g{}\left(10\right), g{}\left(-4\right), g{}\left(4\right)\right)), (DynkinType=2 B^{1}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0\\ 0 & 0 & 2 & 1\\ 0 & 0 & -2 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-10\right), g{}\left(10\right), g{}\left(3\right), g{}\left(-3\right)\right)), (DynkinType=C^{1}{}\left(3\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 2\\ 0 & -2 & 0 & 0\\ 0 & 0 & -2 & -1\\ 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-15\right), g{}\left(15\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(10\right), g{}\left(-10\right), g{}\left(-4\right), g{}\left(4\right)\right)), (DynkinType=C^{1}{}\left(4\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 2\\ 0 & -2 & 0 & 0\\ 0 & 0 & -2 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix};generators=\left(g{}\left(-15\right), g{}\left(15\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(3\right), g{}\left(-3\right), g{}\left(4\right), g{}\left(-4\right)\right))\right))